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SUMMARY

In this work, a new high-order �nite volume element method with good spatial resolution characteristics
is presented. The method is based on a functional representation of the unknowns based on the �nite
element method, a balance of physical quantities in weak formulation obtained by using the �nite
volume method, and an implicit reduction of some of the unknowns obtained by enforcing functional
relations between some of them. Applications to hyperbolic and elliptic operators in 1D and 2D, as well
as to Navier–Stokes equations for incompressible �ows are presented. Copyright ? 2002 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The ful�llment of numerical requirements in speci�c classes of computational �uid dynamics
problems can be considered still an open challenge. For example, in large eddy simulations
of turbulent �ows the use of standard second-order �nite di�erence (FD) schemes cannot be
considered a completely satisfying solution. Higher-order accuracy, spectral or spectral-like
spatial resolution, low dispersion and low dissipation characteristics, together with the ca-
pability of describing complex geometries with reasonable computational e�ort are required.
Recently, research was addressed to develop FD schemes partially satisfying all these require-
ments [1–5] which in some cases seem to be antithetical. Although the classical �nite volume
(FV) method is in common use as a discretization method, yet the FV approach is not fully
systematic, as it requires a scheme for approximating certain �uxes, which is often done in
an e�ective but rather ad hoc and restrictive way that depends upon truncation error analysis.
The evidence of the lack of fully developed guiding principles for the FV approach rely on
the lack of founding theory even though some work is present in literature [6–12]. The �nite
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volume element (FVE) method [13] was developed as an attempt to use �nite element ideas to
create a more systematic and theoretically controlled FV methodology. The FVE method was
applied using triangular elements to advection and advection–di�usion problems [14, 15] and
to Navier–Stokes equations [16]. More recently, Swaminathan et al. [17] applied the stream-
line upwind Petrov–Galerkin technique to FVE. Although recent advances in the FV method
showed a renewed interest in mixed �nite element–�nite volumes formulations [19–21], higher
order formulations are not very common [22]. In this paper a new FVE method is presented,
coupling high accuracy and good spatial resolution characteristics, de�ned as the property of
minimizing the number of grid points required to resolve all relevant wavelengths involved
in the physical problem. The method is targeted to applications in which low dispersion and
low dissipation characteristics are required.

2. METHODOLOGY FUNDAMENTALS

In order to introduce the fundamental concepts of the proposed methodology, let us con-
sider the univariate case relative to a physical domain �∈R. We can introduce the �nite
element (FE) partition TFE of � and the dual TFV on which the conservation balance is
enforced in weak form, as shown in Figure 1(a), being

⋃N
m=1TFEm =�,

⋃M
s=1TFVs =�, with

TFEi ∩TFEj = ∅, TFVi ∩TFVj = ∅ for i �= j. In our case in each FE TFEm the unknown func-
tion �(x) is locally represented by �m(x)=

∑r+1
k=1 Nk(x)�k , Nk(x)∈Pr(K̂), where Nk(x) are the

trial functions, Pr(K̂) is the space of polynomial forms of degree at most r on the reference
element K̂ , and �k are the nodal values, providing a unique representation of the unknown
variable �(x) all over the domain. In the �nite volume element approach, the FE functional
representation is used to evaluate numerical �uxes on the �nite volumes boundaries. In the
present approach, the set of the FE nodal values {�}K̂ in each reference element K̂ is decom-
posed in the sum {�}K̂ = {

∗
�}K̂ ∪{�̂}K̂ , where {�̂}K̂ is the set of the nodal values for which a

FV conservation balance is present and {
∗
�}K̂ are all the remaining FE internal unknowns (see

Figure 1(b)). The local FE representation inside each TFEm can be rewritten in the following
form:

�m(x)=
k1∑
t=1
N̂t(x)N̂t +

k2∑
s=1

∗
Ns(x)

∗
�s; where k1 + k2 = r + 1 (1)

By introducing a linear mapping F between each element
∗
�q of {

∗
�} and a suitable subset

{�̂p} of {�̂}, an explicit substitution
∗
�q =F({�̂p}) can be obtained, resulting in an implicit

coupling among all the unknowns {�̂} for which a FV balance is imposed. An advantage
of this approach is that the increased order of accuracy of the element does not increase the
number of unknowns with respect to the lower-order formulation, the latter being determined
only by the nodes for which a conservation balance is present. On the other hand, depending

on the functional mapping chosen between {
∗
�} and {�̂}, the structure of the �nal linear system

changes, as the computational stencil grows as a consequence of the increasing number of
the unknowns implicitly coupled each other.
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Figure 1. (a) domain � dual tessellation (b) FE internal
∗
� and FV balance nodes �̂.

3. 1D ADVECTION CASE

The global balance equation form for a 1D linear advective transport can be written in weak
form as

N∑
r=1

∫
TFVr

wr

(
@�(x; t)
@t

+ u
@�(x; t)
@x

)
dTFVr =0 (2)

where u is the velocity, assumed with constant value, �=
⋃N
r=1TFVr , x∈[0; L], �0 =�L (pe-

riodic boundary conditions), and {wr} is the set of test functions, de�ned as

wr =




1
meas(TFVr)

if x∈TFVr

0 otherwise

The choice of the mapping function F between internal {
∗
�} and CV variables {�̂} is a key

point of the method. In this work, compact support functions were chosen in order to reduce
the size of the computational molecule for each control volume, and more precisely polynomial
forms. The choice of the mapping function has a strong impact on the spectral resolution and
dispersion characteristics of the scheme. In LES, for instance, centered schemes are required
in order to correctly transport the resolved frequencies, while upwind schemes tend to cut
the lower part of the spectrum near the cuto� frequency [23]. In order to obtain a centred
computational molecule, in this work polynomial interpolation forms of odd degree are chosen:
in 1D their stencil is centred with respect to the FE itself, while in the multidimensional case
its support is centred with respect to the the edge of the FE where internal nodes need to
be mapped. The global computational molecule obtained in this case is centred. Using the

mapping function F between internal {
∗
�} and CV variables {�̂}, it is now possible to express

Equation (2) only in term of the latter.
Introducing the �nite dimensional space V̂ ∈Pr of the trial functions, and the space of

polynomial interpolating forms F̂∈Ps, we can now de�ne the �nite volume element (FVE)rs.
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If we choose V̂ ∈P2(K̂) and F̂∈P3(K̂) we obtain the element FVE23 and the Equation (2)
for the generic FV balance node i in the semi-discretized form can be written as

−1
6
�̇i−2 + �̇i−1 +

19
3
�̇i + �̇i+1 −

1
6
�̇i+2 =

u
h

(
1
2
(�i−2 − �i+2) + 5(�i+1 − �i−1)

)
(3)

while using V̂ ⊆P4(K̂) and F̂ ⊆P3(K̂) (FVE43)

1
12

(
−7
4
�̇i−2 + 11�̇i−1 +

155
2
�̇i + 11�̇i+1 −

7
4
�̇i+2

)

=
u
h

(
1
2
(�i−2 − �i+2) + 5(�i+1 − �i−1)

)
(4)

and using V̂ ⊆P4(K̂) and F̂ ⊆P5(K̂) (FVE45)

1
1440

(
1303
4

�̇i−3 −
4453
2

�̇i−2 +
39 257
4

�̇i−1 + 76333�̇i

+
39257
4

�̇i+1 −
4453
2

�̇i+2 +
1303
4

�̇i+3

)

=
u
h

(
3
4
(�i+3 − �i−3) + 7(�i−2 − �i+2) + 1754 (�i+1 − �i−1)

)
(5)

4. ERROR AND DISPERSION ANALYSIS

Assuming that the solution is smooth enough to perform an expansion in Taylor series the
leading terms in the local truncation errors (LTE) for FVE23, FVE43 and FVE45 are:

LTE(FVE23)i ≡−h4
(
5
288

�̇(4) +
11
480

�(5)
)
+O(h6) (6)

LTE(FVE43)i ≡−h4
(
17
1152

�̇(4) +
11
480

�(5)
)
+O(h6) (7)

LTE(FVE45)i ≡ h6
(

3493
1 105 920

�̇(6) +
197
40 320

�(7)
)
+O(h8) (8)

where �(k) = @k�=@xk and �̇= @�=@t. It is possible to demonstrate that for uniform grids
the semi-discretized Equation (3) is exactly equivalent to the fourth-order Pad�e scheme in
the FD approach at the end of the Runge-Kutta step. In order to perform Fourier analysis
we consider a single Fourier mode of our initial data �0(x)= eikx. Because of the periodicity
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Figure 2. Eigenvalues: (a) and phase speed; (b) for pure 1D advection: (a) exact, (b) FVE23, (c) FVE43,
(d) FVE45, (e) FD Fourth-order, (f) Compact Sixth-order, (g) GFEM linear, (h) GFEM quad.

constraint the wave number k can assume the values kn=2�n, where n∈N0. The corresponding
wavelength is �n=2�=k=1=n and the exact solution is �(x; t)= eik(x−ut) = ei(2�nx−!ct), where
!c≡ ku=2�nu is the temporal frequency of the wave. Introducing a partition of � by means
of N equispaced nodes such as x→ xj= jh, the associate discrete solution is

�j(t)= eiknjhe−i!t (9)

If we de�ne the dimensionless wave number �≡ kh, substituting Equation (9) into the semi-
discretized Equations (3)–(5) after some manipulations we obtain the modi�ed wave numbers

!FVE23 = 3uk
10 sin(�)− sin(2�)

19 + 6 cos(�)− cos(2�) (10)

!FVE43 = 12uk
5 sin(�)− 1

2 sin(2�)
155
4 + 11 cos(�)− 7

4 cos(2�)
(11)

!FVE45 = 2880uk
175
4 sin(�)− 7 sin(2�) + 3

4 sin(3�)
76 333 + 39 257

2 cos(�)− 4453 cos(2�) + 1303
2 cos(3�)

(12)

which can be compared with the exact one !c≡ uk. In Figure 2 the eigenvalues and the
numerical phase speed are plotted with respect to the dimensionless wave number �.
The results show that the proposed FVE method is characterized by a good resolution

characteristics, although inferior at least on uniform meshes to other simpler lower order
methods like quadratic Galerkin �nite element method (GFEM). For resolution characteristics
we mean the accuracy with which the full range of length scales that can be realized on a
given mesh is represented by the discrete scheme. In this sense we can de�ne the proposed
FVE scheme a spectral-like scheme. However, these results should be considered carefully:
they are obtained for uniform meshes, while on non-uniform meshes the real resolution can
be quite di�erent, as the superconvergence property of classical GFEM does not hold.
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Figure 3. Computational stencil for FVE23 type.

5. EXTENSION TO MULTIDIMENSIONAL CASE

The methodological approach described above can be extended to multidimensional cases; the
essential elements remain the choice of the FE trial function space and the space F̂ of the
mapping functions. If we want to retain for F̂ the space of polynomial 1D interpolations, the
extension is straightforward in the case of cartesian grids, while in the case of non-cartesian
grids it requires further considerations: although it is still possible to use di�erent mapping
functions, it is out of the purpose of the present work. As a consequence, in this paper only
results referring to cartesian uniform and non-uniform grids are presented. An attractive choice
for the FE space is to use Serendipity elements [24, 25]; these spaces are constructed using
as reference trial functions the space Sr(K̂) which is the span of Pr(K̂) together with the
two monomial x̂rŷ and ŷr x̂, allowing local degrees of freedom that can be used to ensure
interelement continuity. In the proposed approach quadratic (FVE2x) and quartic (FVE4x)
elements, in which a central node adds a (1− x̂2)(1− ŷ2) shape function, are used to generate
the �nite volume elements FVE23 and FVE43-FVE45. In Figure 3 the complete stencil for a
generic internal Finite Volume k is shown for bidimensional elements FVE23.

6. APPLICATION TO 2D ADVECTION AND ELLIPTIC PROBLEMS

6.1. 2D Convective scalar transport

Linear advective scalar transport numerical tests were performed simulating the pure advection
case proposed by Casper and Atkins [26]. In this simulation a function f(x; y; t)=1=2(cos(�(x+
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Figure 4. Linear advection 2D test: results obtained using FVE23(a), FVE43(b) and FVE45(c).

y − 2t)) + 1) at t=0 is advected by a diagonal vector velocity �eld (u=1; v=1) until t=2
on the domain [x; y]∈[−1; 1]× [−1; 1]. For the temporal discretization a fourth-order Runge–
Kutta method was employed, and all tests were performed by using a �xed timestep �t. The
computed L2 norm ‖û−ue‖L2(�) using the numerical solution û and the exact one ue is plotted
in Figure 4 for a sequence from 10× 10 to 60× 60 mesh nodes and compared with the slope
of di�erent rate of accuracy for both uniform and non-uniform meshes.

6.2. 2D Elliptic problem

Numerical tests have been performed also on elliptic operators, solving a biperiodic BC prob-
lem for the Poisson equation


u=f on � (13)

where � is the square [0; 2�]× [0; 2�]. The rhs of Equation (13) f is taken so that the exact
solution is

u(x; y)= sin(x) cos(2y)

The computed L2 norm ‖û − ue‖L2(�) is plotted in Figure 5 for a sequence from 20× 20 to
80× 80 mesh nodes both uniform and non-uniform meshes. Results show that while in the
linear advective tests the order of accuracy is O(h4) for FVE43 and O(h6) for FVE45, here,
they seem to converge with O(h4), although using the same number of points the absolute
error for FVE45 is much smaller.

7. APPLICATION TO NAVIER–STOKES EQUATIONS

In order to validate the accuracy of the proposed FVE schemes, numerical tests have been
performed by solving the 2D Navier–Stokes equations in the case of an incompressible �ow.
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Figure 5. Poisson equation test: results obtained using FVE23(a) FVE43(b) FVE45(c).

Integrating the unsteady NS momentum equation for incompressible �ows on a generic FV
TFVi , and applying Gauss theorem we obtain

d
dt

∫
TFVi

v dTFVi +
∫
@TFVi

(vv) · n d@TFVi =
1
Re

∫
@TFVi

∇v · n d@TFVi −
∫
TFVi

∇P dTFVi (14)

The NS equations are solved in a collocated arrangement using a projection method on the
weak integral form (14), and time integration has been performed by means of a fourth-
order Runge–Kutta method. An exact solution of the two-dimensional incompressible non-
steady Navier–Stokes equations is considered. The problem is assumed to be periodic in both
directions x and y and therefore periodic boundary conditions have been considered. The
exact solution for velocity and pressure is given by

u= u0e−�t sin(ax) sin(by)

v= v0e−�t cos(ax) cos(by)

p
�
=
P0
�
+ 1

4 u
2
0e

−2�t cos(2ax)− 1
4 v

2
0e

−2�t cos(2by)

where u0; v0; p0 and b are constants and:

v0 =
au0
b
; �= �(a2 + b2)

Here Re=20, Lx=Ly=1 and initial condition is given by setting t=0. The exact solution
consists of sinusoidal waves (Taylor solution) in x and y directions which decay in time.

Compared with classical FV methods, the mapping between {�̂} and {
∗
�} at time tn+1 in-

troduces an implicit character in both steps required to evaluate the provisional value
∗
v for

the velocity and the updated values vn+1. This augmented computational weight, however, is
balanced when implicit time integration is required, for example evaluating viscous �uxes like
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Figure 6. Taylor solution of Navier Stokes equations: L2 norm for u-FVE23(a),
v-FVE23(b),u-FVE45(c), u-FVE45(d).

in most of the cases involving the presence of wall boundaries. Results obtained in these com-
putations show that the order of accuracy is maintained with respect to the coupling between
the solution of the momentum equation for the computation of velocity

∗
v and the solution

of the Poisson equation for the enforcement of continuity. In Figure 6 are shown the norms
‖û−uE‖L2 and ‖v̂− vE‖L2 of the u and v velocity components at t=0:025 respect to the mesh
size for both global second- and fourth-order schemes FVE23 and FVE45.

8. CONCLUSIONS

In this paper a class of high-order FVE schemes with spectral-like spatial resolution char-
acteristics for Navier–Stokes equations is presented. This method, targeted to applications in
which low dispersion and low dissipation characteristics are required, allows a reduction of
the heavy computational e�ort typical of higher-order �nite element methods, through an im-
plicit reduction of the number of unknowns by a local implicit mapping of some degrees
of freedom, maintaining the order of accuracy, the spatial resolution and the low dispersion
characteristics in both uniform and non-uniform meshes. Although numerical tests highlight
the accuracy and the good spatial resolution characteristics in term of modi�ed wave number
of the proposed method, further improvements can be obtained by optimizing the class of the

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:487–496
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mapping function F. In this validation step, the method has been applied to cartesian variable
mesh domains, but it is possible to generalize the approach on more complex geometries.
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